HOMEWORK 12 - ANSWERS TO (MOST) PROBLEMS

 PEYAM RYAN TABRIZIAN
Section 6.1: Areas between curves

6.1.1. $\int_{0}^{4}\left(5 x-x^{2}\right)-x d x=\int_{0}^{4} 4 x-x^{2} d x=\frac{32}{3}$
6.1.3. $\int_{-1}^{1} e^{y}-\left(y^{2}-2\right) d y=e-e^{-1}+\frac{10}{3}$
6.1.13. $\int_{-3}^{3}\left(12-x^{2}\right)-\left(x^{2}-6\right) d x=\int_{-3}^{3} 18-2 x^{2} d x==72$ (points of intersection are $x= \pm 3$)
6.1.21. To find the points of intersection, solve:

$$
\begin{aligned}
\tan (x) & =2 \sin (x) \\
\frac{\sin (x)}{\cos (x)} & =2 \sin (x) \\
\sin (x) & =2 \sin (x) \cos (x) \\
\sin (x)(1-2 \cos (x)) & =0
\end{aligned}
$$

which implies either $\sin (x)=0$, that is $x=0$, or $\cos (x)=\frac{1}{2}$, that is, $x= \pm \frac{\pi}{3}$.
Hence, if you draw a good picture, you'll see that we need to find:

$$
\int_{-\frac{\pi}{3}}^{0} \tan (x)-2 \sin (x) d x+\int_{0}^{\frac{\pi}{3}} 2 \sin (x)-\tan (x) d x
$$

But by symmetry (see your picture), both of those integrals are equal to each other, and therefore:

$$
\begin{aligned}
A & =2\left(\int_{0}^{\frac{\pi}{3}} 2 \sin (x)-\tan (x) d x\right) \\
& =2[-2 \cos (x)-\ln (\sec (x))]_{0}^{\frac{\pi}{3}} \\
& =2\left(-2 \frac{1}{2}-\ln (2)+2-\ln (1)\right) \\
& =2(-1-\ln (2)+2-0) \\
& =2(1-\ln (2)) \\
& =2-2 \ln (2)
\end{aligned}
$$

6.1.42. $\int_{-\frac{1}{2}}^{\frac{1}{2}} 1-|y|-2 y^{2} d y=\int_{-\frac{1}{2}}^{0} 1+y-2 y^{2} d y+\int_{0}^{\frac{1}{2}} 1-y-2 y^{2} d y=-\frac{7}{24}+\frac{7}{24}=$ $\frac{7}{6}$.
(to find the points of intersection, solve $2 y^{2}=1-|y|$, and split up into the two cases $y \geq 0$ and $y<0$). Also, it might help to notice that your function is even, so you really only care about the case where $y \geq 0$.
6.1.43. Here $n=5$, and $D \approx 2(f(1)+f(3)+f(5)+f(7)+f(9))=\frac{2}{60}(2+6+9+$ $11+12)=117 \frac{1}{3}$, where $f(x)=v_{K}-v_{C}$ (notice that $v_{K} \geq v_{C}$ throughout the race!)
6.1.51. The first region has area equal to $\int_{0}^{b} 2 \sqrt{y} d y=\frac{4}{3} b^{\frac{3}{2}}$ (notice that we're integrating with respect to y, and $y=x^{2} \Leftrightarrow y= \pm \sqrt{x}$. Also, draw a picture to see why we have an extra factor of 2 in the integral). The second region has area equal to $\int_{b}^{4} 2 \sqrt{y} d y=-\frac{4}{3} b^{\frac{3}{2}}+\frac{32}{3}$, so to solve for b, we need to set those two areas equal:

$$
\frac{4}{3} b^{\frac{3}{2}}=-\frac{4}{3} b^{\frac{3}{2}}+\frac{32}{3} \Leftrightarrow \frac{8}{3} b^{\frac{3}{2}}=\frac{32}{3} \Leftrightarrow b^{\frac{3}{2}}=4 \Leftrightarrow b=4^{\frac{2}{3}}
$$

Section 6.2: Volumes

Note: In case you're confused by what I mean with K, Outer, Inner, etc., make sure to check out the 'Volumes'-Handout on my website (which is the handout given in section)
6.2.6. Disk method, $K=0, x=e^{y}$, so $\int_{1}^{2} \pi\left(e^{y}\right)^{2} d y=\int_{1}^{2} \pi\left(e^{2 y}\right) d y=\frac{\pi}{2}\left(e^{4}-e^{2}\right)$
6.2.13. Washer method, $K=1$, Outer $=(3)-1=2$, Inner $=(1+\sec (x))-1=$ $\sec (x)$, Points of intersection $\pm \frac{\pi}{3}$, so:
$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \pi\left(2^{2}-\sec ^{2}(x)\right) d x=\pi\left(4 \frac{2 \pi}{3}-\tan \left(\frac{\pi}{3}\right)+\tan \left(\frac{-\pi}{3}\right)\right)=\pi\left(\frac{8 \pi}{3}-2 \sqrt{3}\right)=2 \pi\left(\frac{4}{3} \pi-\sqrt{3}\right)$
6.2.17. Washer method, $K=-1$, and notice $y=x^{2} \Leftrightarrow x=\sqrt{y}$ (in this case $x \geq 0$), Outer $=\sqrt{y}-(-1)=\sqrt{y}+1$, Inner $=y^{2}-(-1)=y^{2}+1$, Point of intersection $y=0$ and $y=1$, so:

$$
\int_{0}^{1} \pi(\sqrt{y}+1)^{2}-\left(y^{2}+1\right)^{2} d y=\frac{29 \pi}{30}
$$

6.2.49. Disk method, $K=0, \int_{r-h}^{r} \pi\left(\sqrt{r^{2}-y^{2}}\right)^{2} d y=\int_{r-h}^{r} \pi\left(r^{2}-y^{2}\right) d y \pi h^{2}\left(r-\frac{1}{3} h\right)$ (use the fact that $x^{2}+y^{2}=r^{2}$, and solve for y)
6.2.55. $A(x)=\frac{1}{2} L^{2}=\frac{1}{2}\left(\frac{b}{\sqrt{2}}\right)^{2}=\frac{1}{4} b^{2}=\frac{1}{4}(2 y)^{2}=y^{2}=\frac{36-9 x^{2}}{4}=9-\frac{9}{4} x^{2}$ (here L is the length of a side of the triangle, and $b=2 y$ is the hypotenuse) so $V=$ $\int_{-2}^{2}\left(9-\frac{9}{4} x^{2}\right) d x=24$ (you get the endpoints by setting $y=0$ in $9 x^{2}+4 y^{2}=36$)
6.2.65. The point is to draw a very good picture! Make one sphere have center $\left(0,-\frac{r}{2}\right)$ in the $x y$-plane and the other one have center $\left(0, \frac{r}{2}\right)$. Then the volume is really the volume of two pieces of equal volume, let's focus on $x \geq 0$ only! Then, using the disk method, you get:

$$
V=2 \int_{0}^{\frac{r}{2}} \pi\left(\sqrt{r^{2}-\left(x+\frac{r}{2}\right)^{2}}\right)^{2} d x=2 \pi \int_{0}^{\frac{r}{2}} r^{2}-\left(x+\frac{r}{2}\right) d x=\frac{5 \pi r^{3}}{12}
$$

(here we used the fact that $\left(x+\frac{r}{2}\right)^{2}+y^{2}=r^{2}$, and solved for y. This looks a bit strange, but remember that your height is really on the left sphere, not on the right one!)
6.2.68. This is much easier with the shell method of section 6.3. Here $K=0$,
$f(x)=\sqrt{R^{2}-x^{2}}\left(\right.$ since $\left.x^{2}+y^{2}=R^{2}\right)$, and so $\int_{r}^{R} 2 \pi x \sqrt{R^{2}-x^{2}} d x=\frac{2 \pi}{3}\left(R^{2}-r^{2}\right)^{\frac{3}{2}}$ (use the substitution $u=R^{2}-x^{2}$)

Section 6.3: Volumes by cylindrical shells

6.3.2. $\int_{0}^{\sqrt{\pi}} 2 \pi x \sin \left(x^{2}\right) d x=2 \pi$ (use the substitution $u=x^{2}$)
6.3.13. Shell method: $K=0,|y-0|=y$, Outer $=2$, Inner $=1+(y-2)^{2}$, Points of intersection $y=1, y=3$, so $\left.\int_{1}^{3} 2 \pi y\left(2-\left(1+(y-2)^{2}\right)\right) d y=\int_{1}^{3} 2 \pi y\left(1-(y-2)^{2}\right)\right) d y=$ $\frac{16 \pi}{3}$.
6.3.15. Shell method: $K=2,|x-2|=2-x$, Outer $=x^{4}$, Inner $=0, \int_{0}^{1} 2 \pi(2-$ $x)\left(x^{4}\right) d x=\frac{7 \pi}{15}$
6.3.19. Shell method: $K=1,|y-1|=1-y$, Outer $=1$, Inner $=\sqrt[3]{y}, \int_{0}^{1} 2 \pi(1-$ $y)(1-\sqrt[3]{y}) d y=\frac{5 \pi}{14}$
6.3.46. Shell method: $K=0,|x|=x$, Outer $=\sqrt{r^{2}-(x-R)^{2}}$ (use the fact that $(x-R)^{2}+y^{2}=r^{2}$), Innter $=-\sqrt{r^{2}-(x-R)^{2}}$, so $\int_{R-r}^{R+r} 2 \pi x 2 \sqrt{r^{2}-(x-R)^{2}} d x=$ $\pi^{2} R r^{2}$ (use the substitution $u=x-R$, and remember what you did in 5.5.73)
6.3.48. Shell method: $K=0,|x|=x$, Outer $=2 \sqrt{R^{2}-x^{2}}$ (use the fact that $x^{2}+y^{2}=R^{2}$), Inner $=0$,

$$
\int_{r}^{R} 2 \pi x\left(2 \sqrt{R^{2}-x^{2}}\right) d x=\frac{4 \pi}{3}\left(R^{2}-r^{2}\right)^{\frac{3}{2}}=\frac{4 \pi}{3}\left(\left(\frac{h}{2}\right)^{2}\right)^{\frac{3}{2}}=\frac{4 \pi}{3} \frac{h^{3}}{8}=\frac{\pi h^{3}}{6}
$$

(use the substitution $u=R^{2}-x^{2}$, and the fact that $r^{2}+\left(\frac{h}{2}\right)^{2}=R^{2}$ by the Pythagorean theorem)

